domingo, 17 de agosto de 2008

Decifrando a matemática

Terror dos estudantes, a disciplina começa a ser ensinada de forma lúdica para cair no gosto dos alunos.

CLAUDIA JORDÃO

A simples pronúncia das palavras álgebra, aritmética ou geometria é o suficiente para arrepiar os cabelos de boa parte dos alunos em uma sala de aula. A constatação não é de hoje. Pelo contrário, geração após geração, a matemática tem lugar cativo no posto de disciplina mais detestada pelos estudantes. E não é só isso. Talvez por ocupar o topo da lista das menos amadas, ela não é assimilada como deveria – fato que também se confirma a cada ano. De acordo com levantamento do Programa Internacional de Avaliação de Alunos (Pisa), divulgado pela Organização para a Cooperação e o Desenvolvimento Econômico (OCDE), os brasileiros obtiveram notas que os colocam na incômoda 53ª posição em matemática, num total de 57 países avaliados. As provas foram realizadas em 2006 com estudantes de 15 anos e divulgadas no ano passado. Mas, afinal, por que essa disciplina continua sendo tão difícil de aprender – e ensinar – no Brasil?

A professora Suely Druck, presidente da Sociedade Brasileira de Matemática, garante que a aversão por números não é exclusividade do povo brasileiro. “Essa é uma disciplina complexa mesmo”, diz. Segundo Suely, há um problema central na hora de ensinála. “Diferentemente das outras matérias, a matemática é seqüencial. Ou seja, se o aluno não aprender a somar e a subtrair, não será capaz de multiplicar ou dividir”, diz. E, no dia-a-dia escolar, essa característica se torna traiçoeira. “Se a criança começa aprendendo mal a matéria, seu desempenho estará condenado pelos próximos anos, porque ela não conseguirá acompanhar e ficará desmotivada”, conclui. Por causa disso, a dirigente defende que professores de primeira a quarta série do ensino fundamental tenham formação específica na disciplina. Atualmente, no País, eles são formados em pedagogia e o mesmo profissional inicia a criança no mundo das letras, das ciências e dos números. “Nas viagens que faço, nos quatro cantos do País, é comum ouvir de professores que os estudantes chegam à quinta série detestando matemática”, conta.

FOTOS: THIAGO BERNARDES/AG. ISTOÉ
No ensino fundamental do Magno, o xadrez é usado para trabalhar o raciocínio (acima). Já os pequenos aprendem fazendo compras

Ex-ministro da Educação no governo Lula, o senador Cristovam Buarque (PDTDF) faz coro. “A matemática precisa ser apresentada à criança quanto antes, por profissionais capacitados e de maneira interessante”, diz. Na opinião do senador, pais e educadores devem proporcionar o uso de brinquedos educativos a partir de um ano de idade. “É nessa fase que eles começam a tomar gosto pelas formas geométricas, além de usar a lógica e o raciocínio.” Boa parte das escolas de educação infantil no País já atentou para isso e busca ensinar matemática de maneira diferente na tentativa de desmistificar o bicho-papão. É o caso do Colégio Pentágono, em São Paulo, que estimula o aluno através de aulas de culinária. Com dois anos de idade, as crianças são convidadas a contar – o número de ovos, por exemplo. A partir dos quatro, elas vivenciam situações concretas de manipulação de quantidade, associadas ao conceito de números. “Ao medir a farinha a ser usada no biscoito, pão ou bolo, a criança está vivendo na prática a matemática”, diz Gisela Bertipaglia, coordenadora de educação infantil de uma das unidades da escola.

O Colégio Magno, também em São Paulo, desenvolve atividades com o objetivo de ensinar educação financeira para alunos de três a seis anos. Para praticar os ensinamentos, eles usam dinheiro de mentira e compram produtos de brinquedo na Vila OZ – um espaço que reproduz uma cidade, com mercado, peixaria e floricultura, montado dentro da escola. “Nessa fase, se a criança não observa, ela não entende”, explica Cláudia Tricate, diretora da instituição.

A preocupação em preparar o estudante para um convívio menos estressante com a matéria se estende, em algumas escolas, para os ensinos fundamental e médio. No Magno, por exemplo, o xadrez é praticado nas aulas de matemática de primeira a nona série, como forma de melhorar o raciocínio do aluno. No Colégio Ítaca, também na capital paulista, a professora de matemática Maria Ângela de Camargo concilia a disciplina em si com literatura sobre o assunto na sala de aula do segundo e terceiro ano do ensino médio. “Nessa época, quando os jovens se preparam para o vestibular e têm que ler e estudar muito, é um desafio inovar”, diz ela. Mas há dez anos a educadora vence a batalha. “Procuro aproveitar todas as oportunidades que tenho para mostrar que a matemática é sensacional”, diz. Os livros indicados são O diabo dos números (Hanz Magnus Enzensberger), aos alunos do segundo ano, e O último teorema de Fermat (Simon Singh), aos do terceiro.

Se em escolas particulares os professores encontram dificuldades para atrair os alunos e desmistificar a matemática, os problemas crescem em progressão geométrica no ensino público. Nele, a educação brasileira vive um trinômio perverso: má-formação de professores, baixos salários e péssimas condições de ensino. “O educador é solitário. Ele ensina sem biblioteca, sem laboratório, sem internet e sem tempo para se reciclar, por causa de sua carga horária pesada”, diz Suely. Na análise de Buarque, há também a contrapartida do estudante. “Criança pobre não se alimenta bem. Portanto, é mais complicado ainda assimilar a matéria”. Com dificuldades maiores ou menores, essa disciplina cheia de números e símbolos ainda é o bicho papão das salas de aulas, apesar do empenho em torná-la menos assustadora e mais atraente.

Fonte : Edição 2024 - 20 de Agosto/2008 - ISTOÉ

quinta-feira, 7 de agosto de 2008

Utilidade Pública - Simulação da votação 2008

Simulação da votação 2008
------------------------------------------------------------------------------------------


Clique no link abaixo

Simulador da Urna Eletrônica

:: Como Votar

Usando o teclado da urna, que é similar ao do telefone, digite o número do candidato de sua preferência.

Na tela, aparecerão a foto, o número, o nome e a sigla do partido do candidato.

Se o cargo for prefeito, além dessas informações também aparecerão o nome e a foto do candidato à vice-prefeito.

Se as informações estiverem corretas, aperte a tecla verde CONFIRMA.

A cada voto confirmado, a urna emitirá um rápido sinal sonoro.

Após o registro do voto para prefeito, a urna emitirá um sinal sonoro mais intenso e prolongado e aparecerá na tela a palavra FIM.

:: Como corrigir o voto

Se não aparecerem na tela todas as informações sobre o candidato escolhido, aperte a tecla laranja CORRIGE e repita o procedimento anterior.

:: Como votar no partido (voto de legenda)

Caso você queira votar na legenda, digite o número do partido, que corresponde aos dois primeiros algarismos do número do candidato e confirme o seu voto apertando a tecla verde CONFIRMA.

O voto na legenda só será possível para o cargo de vereador.

:: Como votar em branco

Para votar em branco, aperte a tecla BRANCO.

Confirme o seu voto apertando a tecla verde CONFIRMA.

Cuidado! Se você digitar um número de candidato ou de partido inexistentes e depois apertar a tecla verde CONFIRMA, seu voto será contabilizado como voto nulo.

:: Simulação de votação na Urna Eletrônica

Após ter lido atenciosamente as instruções de como votar, faça uma simulação de votação na urna eletrônica.


terça-feira, 5 de agosto de 2008

Progressão Geométrica, PG

1 – Definição

Entenderemos por progressão geométrica - PG - como qualquer seqüência de números reais ou complexos, onde cada termo a partir do segundo, é igual ao anterior, multiplicado por uma constante denominada razão.

Exemplos:

(1,2,4,8,16,32, ... ) PG de razão 2
(5,5,5,5,5,5,5, ... ) PG de razão 1
(100,50,25, ... ) PG de razão 1/2
(2,-6,18,-54,162, ...) PG de razão -3

2 - Fórmula do termo geral

Seja a PG genérica: (a1, a2, a3, a4, ... , a n, ... ) , onde a1 é o primeiro termo, e an é o n-ésimo termo, ou seja, o termo de ordem n. Sendo q a razão da PG, da definição podemos escrever:
a2 = a1 . q
a3 = a2 . q = (a1 . q) . q = a1 . q2
a4 = a3 . q = (a1 . q2) . q = a1 . q3
................................................
................................................

Infere-se (deduz-se) que: an = a1 . qn-1 , que é denominada fórmula do termo geral da PG.
Genericamente, poderemos escrever: aj = ak . qj-k

Exemplos:

a) Dada a PG (2,4,8,... ), pede-se calcular o décimo termo.
Temos: a1 = 2, q = 4/2 = 8/4 = ... = 2. Para calcular o décimo termo ou seja a10, vem pela fórmula:
a10 = a1 . q9 = 2 . 29 = 2. 512 = 1024

b) Sabe-se que o quarto termo de uma PG crescente é igual a 20 e o oitavo termo é igual a 320. Qual a razão desta PG?
Temos a4 = 20 e a8 = 320. Logo, podemos escrever: a8 = a4 . q8-4 . Daí, vem: 320 = 20.q4
Então q4 =16 e portanto q = 2.

Nota: Uma PG genérica de 3 termos, pode ser expressa como:
(x/q, x, xq), onde q é a razão da PG.

3 - Propriedades principais

P1 - em toda PG, um termo é a média geométrica dos termos imediatamente anterior e posterior.
Exemplo: PG (A,B,C,D,E,F,G)
Temos então: B2 = A . C ; C2 = B . D ; D2 = C . E ; E2 = D . F etc.

P2 - o produto dos termos eqüidistantes dos extremos de uma PG é constante.
Exemplo: PG ( A,B,C,D,E,F,G)
Temos então: A . G = B . F = C . E = D . D = D2

4 - Soma dos n primeiros termos de uma PG

Seja a PG (a1, a2, a3, a4, ... , an , ...) . Para o cálculo da soma dos n primeiros termos Sn , vamos considerar o que segue:
Sn = a1 + a2 + a3 + a4 + ... + an-1 + an

Multiplicando ambos os membros pela razão q vem:
Sn . q = a1 . q + a2 .q + .... + an-1 . q + an .q .

Logo, conforme a definição de PG, podemos reescrever a expressão acima como:
Sn . q = a2 + a3 + ... + an + an . q

Observe que a2 + a3 + ... + an é igual a Sn - a1 . Logo, substituindo, vem:
Sn . q = Sn - a1 + an . q

Daí, simplificando convenientemente, chegaremos à seguinte fórmula da soma:

Se substituirmos a n = a1 . qn-1 , obteremos uma nova apresentação para a fórmula da soma, ou seja:

Exemplo:

Calcule a soma dos 10 primeiros termos da PG (1,2,4,8,...)
Temos:

Observe que neste caso a1 = 1.

5 - Soma dos termos de uma PG decrescente e ilimitada

Considere uma PG ILIMITADA ( infinitos termos) e decrescente. Nestas condições, podemos considerar que no limite teremos an = 0. Substituindo na fórmula anterior, encontraremos:

Exemplo:
Resolva a equação: x + x/2 + x/4 + x/8 + x/16 + ... =100
Ora, o primeiro membro é uma PG de primeiro termo x e razão 1/2. Logo, substituindo na fórmula, vem:

Daí, vem: x = 100 . 1/2 = 50

6 – Exercícios resolvidos e propostos

6.1 - Se a soma dos tres primeiros termos de uma PG decrescente é 39 e o seu produto é 729 , então sendo a, b e c os tres primeiros termos , pede-se calcular o valor de a2 + b2 + c2 .

Solução:

Sendo q a razão da PG, poderemos escrever a sua forma genérica: (x/q, x, xq).
Como o produto dos 3 termos vale 729, vem:
x/q . x . xq = 729 de onde concluímos que:
x3 = 729 = 36 = 33 . 33 = 93 , logo, x = 9.

Portanto a PG é do tipo: 9/q, 9, 9q
É dado que a soma dos 3 termos vale 39, logo:
9/q + 9 + 9q = 39 de onde vem: 9/q + 9q – 30 = 0

Multiplicando ambos os membros por q, fica:
9 + 9q2 – 30q = 0

Dividindo por 3 e ordenando, fica:
3q2 – 10q + 3 = 0, que é uma equação do segundo grau.
Resolvendo a equação do segundo grau acima encontraremos q = 3 ou q = 1/3.

Como é dito que a PG é decrescente, devemos considerar apenas o valor
q = 1/3, já que para q = 3, a PG seria crescente.
Portanto, a PG é:
9/q, 9, 9q, ou substituindo o valor de q vem: 27, 9, 3.

O problema pede a soma dos quadrados, logo:
a2 + b2 + c2 = 272 + 92 + 32 = 729 + 81 + 9 = 819

6.2 - Sabe-se que S = 9 + 99 + 999 + 9999 + ... + 999...9 onde a última parcela contém n algarismos. Nestas condições, o valor de 10n+1 - 9(S + n) é:
A)1
*B) 10
C) 100
D) -1
E) -10

Solução:

Observe que podemos escrever a soma S como:
S = (10 – 1) + (100 – 1) + (1000 – 1) + (10000 – 1) + ... + (10n – 1)
S = (10 – 1) + (102 – 1) + (103 – 1) + (104 – 1) + ... + (10n – 1)

Como existem n parcelas, observe que o número (– 1) é somado n vezes,
resultando em n(-1) = - n.

Logo, poderemos escrever:
S = (10 + 102 + 103 + 104 + ... + 10n ) – n

Vamos calcular a soma Sn = 10 + 102 + 103 + 104 + ... + 10n , que é uma PG de primeiro termo a1 = 10, razão q = 10 e último termo an = 10n . Teremos:
Sn = (an.q – a1) / (q –1) = (10n . 10 – 10) / (10 – 1) = (10n+1 – 10) / 9
Substituindo em S, vem:
S = [(10n+1 – 10) / 9] – n

Deseja-se calcular o valor de 10n+1 - 9(S + n)
Temos que S + n = [(10n+1 – 10) / 9] – n + n = (10n+1 – 10) / 9

Substituindo o valor de S + n encontrado acima, fica:
10n+1 – 9(S + n) = 10n+1 – 9(10n+1 – 10) / 9 = 10n+1 – (10n+1 – 10) = 10

6.3 - O limite da expressão onde x é positivo, quando o número de radicais aumenta indefinidamente
é igual a:
A)1/x
*B) x
C) 2x
D) n.x
E) 1978x

Solução:

Observe que a expressão dada pode ser escrita como:
x1/2. x1/4 . x1/8 . x1/16 . ... = x1/2 + 1 / 4 + 1/8 + 1/16 + ...

O expoente é a soma dos termos de uma PG infinita de primeiro termo a1 = 1 /2 e
razão q = 1 /2. Logo, a soma valerá: S = a1 / (1 – q) = (1 /2) / 1 – (1 /2) = 1
Então, x1/2 + 1 / 4 + 1/8 + 1/16 + ... = x1 = x

6.4 - UEFS - Os números que expressam os ângulos de um quadrilátero, estão em progressão geométrica de razão 2. Um desses ângulos mede:
a) 28°
b) 32°
c) 36°
*d) 48°
e) 50°

Solução:

Seja x o menor ângulo interno do quadrilátero em questão. Como os ângulos estão em Progressão Geométrica de razão 2, podemos escrever a PG de 4 termos:
( x, 2x, 4x, 8x ).
Ora, a soma dos ângulos internos de um quadrilátero vale 360º . Logo,
x + 2x + 4x + 8x = 360º
15.x = 360º
Portanto, x = 24º . Os ângulos do quadrilátero são, portanto: 24º, 48º, 96º e 192º.
O problema pede um dos ângulos. Logo, alternativa D.

Agora resolva este:

Calcular a razão de uma PG crescente, sabendo-se que o seu primeiro termo é o dobro da razão e que a soma dos dois primeiros termos é 24.
Resposta: 3

Progressão Aritmética - PA

1 - Introdução

Chama-se seqüência ou sucessão numérica, a qualquer conjunto ordenado de números reais ou complexos. Assim, por exemplo, o conjunto ordenado A = ( 3, 5, 7, 9, 11, ... , 35) é uma seqüência cujo primeiro termo é 3, o segundo termo é 5, o terceiro termo é 7 e assim sucessivamente.

Uma seqüência pode ser finita ou infinita.
O exemplo dado acima é de uma seqüência finita.
Já a seqüência P = (0, 2, 4, 6, 8, ... ) é infinita.

Uma seqüência numérica pode ser representada genericamente na forma:
(a1, a2, a3, ... , ak, ... , an, ...) onde a1 é o primeiro termo, a2 é o segundo termo, ... , ak é o k-ésimo termo, ... , an é o n-ésimo termo. (Neste caso, k <>

Por exemplo, na seqüência Y = ( 2, 6, 18, 54, 162, 486, ... ) podemos dizer que a3 = 18, a5 = 162, etc.

São de particular interesse, as seqüências cujos termos obedecem a uma lei de formação, ou seja é possível escrever uma relação matemática entre eles.
Assim, na seqüência Y acima, podemos observar que cada termo a partir do segundo é igual ao anterior multiplicado por 3.
A lei de formação ou seja a expressão matemática que relaciona entre si os termos da seqüência, é denominada termo geral.

Considere por exemplo a seqüência S cujo termo geral seja dado por an = 3n + 5, onde n é um número natural não nulo.
Observe que atribuindo-se valores para n, obteremos o termo an (n - ésimo termo) correspondente.
Assim por exemplo, para n = 20, teremos
an = 3.20 + 5 = 65, e portanto o vigésimo termo dessa seqüência (a20) é igual a 65.
Prosseguindo com esse raciocínio, podemos escrever toda a seqüência S que seria:
S = ( 8, 11, 14, 17, 20, ... ).

Dado o termo geral de uma seqüência, é sempre fácil determiná-la.
Seja por exemplo a seqüência de termo geral an = n2 + 4n + 10, para n inteiro e positivo.
Nestas condições, podemos concluir que a seqüência poderá ser escrita como:
(15, 22, 31, 42, 55, 70, ... ).

Por exemplo:
a6 = 70 porque a6 = 62 + 4.6 + 10 = 36 + 24 + 10 = 70.

2 - Conceito de Progressão Aritmética - PA

Chama-se Progressão Aritmética – PA – à toda seqüência numérica cujos termos a partir do segundo, são iguais ao anterior somado com um valor constante denominado razão.

Exemplos:
A = ( 1, 5, 9, 13, 17, 21, ... ) razão = 4 (PA crescente)
B = ( 3, 12, 21, 30, 39, 48, ... ) razão = 9 (PA crescente)
C = ( 5, 5, 5, 5, 5, 5, 5, ... ) razão = 0 (PA constante)
D = ( 100, 90, 80, 70, 60, 50, ... ) razão = -10 ( PA decrescente)

3 - Termo Geral de uma PA

Seja a PA genérica (a1, a2, a3, ... , an, ...) de razão r.
De acordo com a definição podemos escrever:
a2 = a1 + 1.r
a3 = a2 + r = (a1 + r) + r = a1 + 2r
a4 = a3 + r = (a1 + 2r) + r = a1 + 3r
.....................................................

Podemos inferir (deduzir) das igualdades acima que: .............. an = a1 + (n – 1) . r
A expressão an = a1 + (n – 1) . r é denominada termo geral da PA.
Nesta fórmula, temos que an é o termo de ordem n (n-ésimo termo) , r é a razão e a1 é o primeiro termo da Progressão Aritmética – PA.

Exemplos:

Qual o milésimo número ímpar positivo?
Temos a PA: ( 1, 3, 5, 7, 9, ... ) onde o primeiro termo a1= 1, a razão r = 2 e queremos calcular o milésimo termo a1000. Nestas condições, n = 1000 e poderemos escrever:
a1000 = a1 + (1000 - 1).2 = 1 + 999.2 = 1 + 1998 = 1999.
Portanto, 1999 é o milésimo número ímpar.

Qual o número de termos da PA: ( 100, 98, 96, ... , 22) ?
Temos a1 = 100, r = 98 -100 = - 2 e an = 22 e desejamos calcular n.
Substituindo na fórmula do termo geral, fica: 22 = 100 + (n - 1). (- 2) ;
logo, 22 - 100 = - 2n + 2 e, 22 - 100 - 2 = - 2n de onde conclui-se que - 80 = - 2n ,
de onde vem n = 40.
Portanto, a PA possui 40 termos.

Através de um tratamento simples e conveniente da fórmula do termo geral de uma PA, podemos generaliza-la da seguinte forma:

Sendo aj o termo de ordem j (j-ésimo termo) da PA e ak o termo de ordem k ( k-ésimo termo) da PA, poderemos escrever a seguinte fórmula genérica:
aj = ak + (j - k).r

Exemplos:

Se numa PA o quinto termo é 30 e o vigésimo termo é 60, qual a razão?
Temos a5 = 30 e a20 = 60.
Pela fórmula anterior, poderemos escrever:
a20 = a5 + (20 - 5) . r e substituindo fica: 60 = 30 + (20 - 5).r ;
60 - 30 = 15r ; logo, r = 2.

Numa PA de razão 5, o vigésimo termo vale 8. Qual o terceiro termo?
Temos r = 5, a20 = 8.
Logo, o termo procurado será: a3 = a20 + (3 – 20).5
a3 = 8 –17.5 = 8 – 85 = - 77.

4 - Propriedades das Progressões Aritméticas

Numa PA, cada termo (a partir do segundo) é a média aritmética dos termos vizinhos deste.

Exemplo:
PA : ( m, n, r ) ; portanto, n = (m + r) / 2

Assim, se lhe apresentarem um problema de PA do tipo:
Três números estão em PA, ... , a forma mais inteligente de resolver o problema é considerar que a PA é do tipo:
(x - r, x, x + r), onde r é a razão da PA.

Numa PA, a soma dos termos eqüidistantes dos extremos é constante.

Exemplo:
PA : ( m, n, r, s, t); portanto, m + t = n + s = r + r = 2r

Estas propriedades facilitam sobremaneira a solução de problemas.

5 - Soma dos n primeiros termos de uma PA

Seja a PA ( a1, a2, a3, ..., an-1, an).
A soma dos n primeiros termos Sn = a1 + a2 + a3 + ... + an-1 + an , pode ser deduzida facilmente, da aplicação da segunda propriedade acima.

Temos:
Sn = a1 + a2 + a3 + ... + an-1 + an

É claro que também poderemos escrever a igualdade acima como:
Sn = an + an-1 + ... + a3 + a2 + a1

Somando membro a membro estas duas igualdades, vem:
2. Sn = (a1 + an) + (a2 + an-1) + ... + (an + a1)

Logo, pela segunda propriedade acima, as n parcelas entre parênteses possuem o mesmo valor ( são iguais à soma dos termos extremos a1 + an ) , de onde concluímos inevitavelmente que:
2.Sn = (a1 + an).n , onde n é o número de termos da PA.

Daí então, vem finalmente que:

Exemplo:
Calcule a soma dos 200 primeiros números ímpares positivos.
Temos a PA: ( 1, 3, 5, 7, 9, ... )
Precisamos conhecer o valor de a200 .
Mas, a200 = a1 + (200 - 1).r = 1 + 199.2 = 399
Logo, Sn = [(1 + 399). 200] / 2 = 40.000
Portanto, a soma dos duzentos primeiros números ímpares positivos é igual a 40000.

Exercícios resolvidos e propostos:

1 - Qual é o número mínimo de termos que se deve somar na P.A. :( 7/5 , 1 , 3/5 , ... ) , a partir do primeiro termo, para que a soma seja negativa?
*a) 9
b) 8
c) 7
d ) 6
e) 5

SOLUÇÃO:
Temos: a1 = 7/5 e r = 1 – 7/5 = 5/5 – 7/5 = -2/5, ou seja: r = -2/5.
Poderemos escrever então, para o n-ésimo termo an:
an = a1 + (n – 1).r = 7/5 + (n – 1).(-2/5)
an = 7/5 – 2n/5 + 2/5 = (7/5 + 2/5) –2n/5 = 9/5 –2n/5 = (9 – 2n)/5

A soma dos n primeiros termos, pela fórmula vista anteriormente será então:
Sn = (a1 + an). (n/2) = [(7/5) + (9 – 2n)/5].(n/2) = [(16 – 2n)/5].(n/2)
Sn = (16n – 2n2) / 10

Ora, nós queremos que a soma Sn seja negativa; logo, vem:
(16n – 2n2) / 10 <>

Como o denominador é positivo, para que a fração acima seja negativa, o numerador deve ser negativo. Logo, deveremos ter:
16n – 2n2 <>

Portanto, n(16 – 2n ) <> 16 ou n > 8.

Como n é um número inteiro positivo, deduzimos imediatamente que n = 9.
Portanto, a alternativa correta é a letra A.

2 - As medidas dos lados de um triângulo são expressas por x + 1, 2x , x2 - 5 e estão em P.A. , nesta ordem. O perímetro do triângulo vale:
a) 8
b) 12
c) 15
*d) 24
e) 33

SOLUÇÃO:
Ora, se x + 1, 2x , x2 – 5 formam uma P.A. , podemos escrever:
2x – (x + 1) = (x2 – 5) – 2x
2x – x –1 + 5 – x2 + 2x = 0
3x + 4 – x2 = 0

Multiplicando por (-1) ambos os membros da igualdade acima, fica:
x2 – 3x – 4 = 0
Resolvendo a equação do segundo grau acima encontraremos x = 4 ou x = - 1.

Assim, teremos:
x = 4: os termos da P.A . serão: x+1, 2x, x2 – 5 ou substituindo o valor de x encontrado: 5, 8, 11, que são as medidas dos lados do triângulo. Portanto, o perímetro do triângulo (soma das medidas dos lados) será igual a 5+8+11 = 24.
O valor negativo de x não serve ao problema, já que levaria a valores negativos para os lados do triângulo, o que é uma impossibilidade matemática, pois as medidas dos lados de um triângulo são necessariamente positivas. Portanto, a alternativa correta é a letra D.

3 - UFBA - Um relógio que bate de hora em hora o número de vezes correspondente a cada hora, baterá , de zero às 12 horas x vezes. Calcule o dobro da terça parte de x.
Resp: 60

SOLUÇÃO:
Teremos que:
0 hora o relógio baterá 12 vezes. (Você não acha que bateria 0 vezes, não é?).
1 hora o relógio baterá 1 vez
2 horas o relógio baterá 2 vezes
3 horas o relógio baterá 3 vezes
....................................................
....................................................
12 horas o relógio baterá 12 vezes.

Logo, teremos a seguinte seqüência:
(12, 1, 2, 3, 4, 5, ... , 12)

A partir do segundo termo da seqüência acima, temos uma PA de 12 termos, cujo primeiro termo é igual a 1, a razão é 1 e o último termo é 12.

Portanto, a soma dos termos desta PA será:
S = (1 + 12).(12/2) = 13.6 = 78

A soma procurada será igual ao resultado anterior (a PA em vermelho acima) mais as 12 batidas da zero hora. Logo, o número x será igual a x = 78 + 12 = 90.
Logo, o dobro da terça parte de x será: 2. (90/3) = 2.30 = 60, que é a resposta do problema proposto.

4 - UFBA - Numa progressão aritmética, o primeiro termo é 1 e a soma do n-ésimo termo com o número de termos é 2. Calcule a razão dessa progressão.
Resp: r = -1

SOLUÇÃO:
Temos: a1 = 1 e an + n = 2, onde an é o n-ésimo termo.
Fazendo n = 2, vem: a2 + 2 = 2, de onde vem imediatamente que a2 = 0.
Daí, r = a2 – a1 = 0 – 1 = -1, que é a resposta procurada.

5 - A soma dos múltiplos positivos de 8 formados por 3 algarismos é:
a) 64376
b) 12846
c) 21286
d) 112
*e) 61376

SOLUÇÃO:
Números com 3 algarismos: de 100 a 999.
Primeiro múltiplo de 8 maior do que 100 = 104 (que é igual a 8x13)
Maior múltiplo de 8 menor do que 999 = 992 (que é igual a 8x124)

Temos então a PA: (104, 112, 120, 128, 136, ... , 992).
Da fórmula do termo geral an = a1 + (n – 1) . r poderemos escrever:
992 = 104 + (n – 1).8, já que a razão da PA é 8.
Daí vem: n = 112

Aplicando a fórmula da soma dos n primeiros termos de uma PA, teremos finalmente:
Sn = S112 = (104 + 992).(112/2) = 61376
A alternativa correta é portanto, a letra E.

6 – Determinar o centésimo termo da progressão aritmética na qual a soma do terceiro termo com o sétimo é igual a 30 e a soma do quarto termo com o nono é igual a 60.
Resp: 965

SOLUÇÃO:
Podemos escrever:
a3 + a7 = 30
a4 + a9 = 60

Usando a fórmula do termo geral, poderemos escrever:
a1 + 2r + a1 + 6r = 30 ou 2.a1 + 8r = 30
a1 + 3r + a1 + 8r = 60 ou 2.a1 + 11r = 60

Subtraindo membro a membro as duas expressões em negrito, vem:
3r = 30 , de onde concluímos que a razão é igual a r = 10.

Substituindo numa das equações em negrito acima, vem:
2.a1 + 8.10 = 30, de onde tiramos a1 = - 25.

Logo, o centésimo termo será:
a100 = a1 + 99r = - 25 + 99.10 = 965

Agora resolva estes:

UFBA - Considere a P.A. de razão r , dada por (log4 , log12 , log36 , ... ). Sendo a22 = k,
determine 10k + r : 320.
Resposta: 36